Real Time Prediction of Drive by Download Attacks on Twitter
نویسندگان
چکیده
The popularity of Twitter for information discovery, coupled with the automatic shortening of URLs to save space, given the 140 character limit, provides cyber criminals with an opportunity to obfuscate the URL of a malicious Web page within a tweet. Once the URL is obfuscated the cyber criminal can lure a user to click on it with enticing text and images before carrying out a cyber attack using a malicious Web server. This is known as a drive-bydownload. In a drive-by-download a user’s computer system is infected while interacting with the malicious endpoint, often without them being made aware the attack has taken place. An attacker can gain control of the system by exploiting unpatched system vulnerabilities and this form of attack currently represents one of the most common methods employed. In this paper we build a machine learning model using machine activity data and tweet meta data to move beyond post-execution classification of such URLs as malicious, to predict a URL will be malicious with 99.2% F-measure (using 10-fold cross validation) and 83.98% (using an unseen test set) at 1 second into the interaction with the URL. Thus providing a basis from which to kill the connection to the server before an attack has completed and proactively blocking and preventing an attack, rather than reacting and repairing at a later date.
منابع مشابه
Efficient and effective realtime prediction of drive-by download attacks
Drive-by download attacks are common attack vector for compromising personal computers. While several alternatives to mitigate the threat have been proposed, approaches to realtime detection of drive-by download attacks has been predominantly limited to static and semi-dynamic analysis techniques. These techniques examine the original or deobfuscated JavaScript source code to assess the potenti...
متن کاملAnalysis of Spamming Threats and Some Possible Solutions for Online Social Networking Sites (OSNS)
In this paper we are presenting some spamming techniques their behaviour and possible solutions. We have analyzed how Spammers enters into online social networking sites (OSNSs) to target them and diverse techniques used by them for this purpose. Spamming is very common issue in present era of Internet especially through Online Social Networking Sites (like Facebook, Twitter, and Google+ etc.)....
متن کاملDesign and Test of the Real-time Text mining dashboard for Twitter
One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholar...
متن کاملMeasuring Drive-by Download Defense in Depth
Defense in depth is vital as no single security product detects all of today’s attacks. To design defense in depth organizations rely on best practices and isolated product reviews with no way to determine the marginal benefit of additional security products. We propose empirically testing security products’ detection rates by linking multiple pieces of data such as network traffic, executable ...
متن کاملAnalysing web-based malware behaviour through client honeypots
With an increase in the use of the internet, there has been a rise in the number of attacks on servers. These attacks can be successfully defended against using security technologies such as firewalls, IDS and anti-virus software, so attackers have developed new methods to spread their malicious code by using web pages, which can affect many more victims than the traditional approach. The attac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.05831 شماره
صفحات -
تاریخ انتشار 2017